Friday, October 18, 2013

International EM induction workshop 2014



International EM induction workshops

Germany 24 – 30 August 2014

IAGA (International Association of Geomagnetism and Aeronomy) is one of eight associations within IUGG (International Union of Geodesy and Geophysics) and IUGG is one of thirty unions within ICSU (International Council for Science).

The main activity of working group I.2 of IAGA is the biennial Electromagnetic Induction in the Earth Workshops, initiated in 1972. The EM induction workshops are the most important events for researchers around the world in the field of electromagnetism in geophysics.

The 22nd EM Induction Workshop in 2014 is organized by the German EM community.

Scientific Program

Please check back in early 2014 for more information on submitting abstracts and the scientific program.

Workshop Invited Reviewers

We are pleased to announce invited reviews from a range of acclaimed international scientists who are experts in their fields. These invited reviews provide a unique opportunity to hear the state-of-the-art in electromagnetic methods and applications. As in previous Workshops, these reviews will later be published.


Sunday, October 6, 2013

Joint inversion of refraction and reflection seismics traveltimes data

Joint inversion of refraction and reflection seismics traveltimes data

Kaminsky Alex, Zond software

Introduction
The joint inversion method for  arrival times  of refracted and reflected waves is discussed in this paper. Nowadays this approach is  popular and widely used for solving task of deep seismic exploration. Here we consider an algorithm of forward and inverse problems  specialized for near surface  seismics.
In engineering seismics there was many attempt separation of the reflected waves for extra information. It well known that using of refracted waves only, gives too rough  velocity profile.
Unfortunately, in most cases of engineering studies, there is difficult to identify the reflected waves, because it is "noised" by other types of waves. Since the problem of identification of the reflected waves is an independent, complex direction -  and will not be considered here. Let us assume that for our task, the first breaks and the time of arrival of the reflected waves for the n-th number of boundaries are known.
Forward problem
Forward problem - calculation the first arrival times and the arrival of the reflected waves for a model with an arbitrary velocity distribution and geometry of the reflector based on the Shortest path method (Moser, 1991). This method allows us to calculate the shortest ray path for refracted waves.
The combination of minimum paths  from the source and the receiver to the reflector point allows the build path of the reflected wave for each boundary. Minimal total travel time from the source and the receiver is selected as a reflection point of the border. Using of this method removes the restriction on the complexity geometry  of topography and the  reflecting boundary and  can be used for the interpretation of engineering seismics .
Forward problem has been developed for the two types of models. In the first case velocity section defined as a set of layers with arbitrary geometry boundaries and arbitrary distribution of the velocity inside each layer. The complexity of the boundaries is controlled by nodes number. Any boundary can be reflected and refracted, or only refracted. The advantages of this model type is the possibility of joint interpretation of P and S waves in a common geometry boundaries. Also, it is convenient to use for  sparse observation systems.
In the second case, the model is divided regular mesh of cells with arbitrary velocity. Reflected boundaries are set arbitrarily and are not joined with the geometry of the cells. This type of model is useful for dense observation networks, such as seismic tomography.
Additional extra features of the algorithm includes the possibility of taking account of surface  topography,  anisotropy and the attenuation parameter.
Testing algorithm of forward problem was carried out for a number of analytical solutions and using other well known algorithms (Fig. 1). Shortest path method is based on graph theory, and has controlled accuracy, so when a sufficiently dense subdividing of boundaries could get accuracy less than 0.01 percent.

Figure 1 Calculated reflected (A) and refracted (B) travel times curves and ray paths for complex velocity model.
Inverse problem
For the inverse problem Occam inversion (Constable et all, 1987) procedure was used. The main problem with the joint inversion of velocities and geometry of boundaries is the difference of dimensions for this parameters. This negatively affects the properties of the matrix system. To reduce the dynamic range of the matrix - logarithmic norms of parameters (velocities and  local thicknesses of layers and  apparent velocities) were used.
        Using of thicknesses instead  the depths is allow to avoid the problem of boundaries intersection in the resulting model.  Also, in order to suppress  strong oscillations of geometry,   an additional parameter controls the relative speed of change for velocity and thicknesses was used. Smoothing filter is constructed differently for the two types of models. In the first case, the operator is designed separately for each layer and works in the horizontal direction.  In the second case the common filter is used for smoothing all cell's velocities and additional  - for smoothing  layer's boundary.
Algorithm testing
Inversion algorithm was tested on synthetic data (Fig.2) calculated for several types of velocity models. As a tested model - four-layer cross-section  with arbitrary boundaries and the high-velocity object inside second layer was used.
Node sampling interval for boundary correspond to twice distance between the geophones. Observing system correspond to seismic tomography with shot point at each geophone. Directly before each inversion of synthetic travel times noise component was added.
Testing was performed as follows:
·         In the first stage only first arrival times for the first and second types of models  were inverted. The horizontally layered  model with a constant velocity gradient  was used as start.
·         At  the second stage only reflected times for the first and second types of models  were inverted. The horizontally layered  model with a constant velocity  was used as start.
·         In the third stage, the joint  inversion for refracted and reflected waves data was carried out. In our experience, when working with synthetic data, to achieve acceptable data fitting, there is only  three or four iterations enough.
·         Finally, the inverted models were compared to the original.

Figure 2 Example of refracted and reflected synthetic travel times inversion. A – calculated reflection travel times data for original model C; B – calculated refraction travel times data for original model C; C – four-layers arbitrary velocity model with one reflections boundary(3); D – result of joint   reflected and refracted data inversion; E - result of refracted data inversion; F - result of reflected data inversion. Before every inversion pass, noise was added to the synthetic data.
Figure 2 shows the results of testing the algorithm for arbitrary layered model. This is a typical velocity section at engineering geophysical surveys. The upper part of the model consists of a low-velocity sedimentary rocks. The basis of the section is high-velocity rock formations.
Synthetic seismic survey consisted of 24 geophones spaced at 5 meters and  shots in each geophones point.
The inversion was carried out until the RMS did not reach a specified level of noise. For this example, only 4-5 iterations was enough. The average computation time for each inversion was  about  two minutes.
As seen from the figure 2, the best results were obtained from the joint inversion of reflected and refracted data 2D.  It is practically corresponds to the original model.  With the one hand, using of reflection data allow to get the best rays coverage (for a more reliable determination of the velocity), on the other - it is better to recover  the reflecting boundary geometry.
When the inversion carried out for reflected or refracted data separately, the model recovered considerably rougher. This is especially well seen for inversion of refracted data 2E. The lower boundary  (reflected) shifted by almost 10 meters.
Test results for a number of models have shown significant improvement in the accuracy of recovering parameters in the joint inversion. Algorithm for joint interpretation of refracted and reflected travel times data was  realized in the ZondST2D and is currently  testing with field's data.
Conclusions
Proposed algorithm can be used for processing of shallow seismic data. The joint inversion of reflected and refracted travel times data significantly improves the quality of the resulted velocity sections. Using of refracted and reflected travel times data together  allow to achieve greater depth of investigation.
Reference
1. Moser T.J., Shortest path calculation of seismic rays, Geophysics, vol. 56, no. 1, 1991.
     2. Constable S.,Parker R., Constable C. Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. 1987. Geophysics 52, 289.

Saturday, April 27, 2013

Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° совмСстной инвСрсии Π²Ρ€Π΅ΠΌΠ΅Π½ ΠΏΡ€ΠΈΡ…ΠΎΠ΄Π° ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½




Каминский А.Π•.
Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅
Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ рассматриваСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° совмСстной инвСрсии Π²Ρ€Π΅ΠΌΠ΅Π½ ΠΏΡ€ΠΈΡ…ΠΎΠ΄Π° ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½.  Π”Π°Π½Π½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ сСйчас популярно ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ  Π·Π° Ρ€ΡƒΠ±Π΅ΠΆΠΎΠΌ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠΉ сСйсморазвСдки.
ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ  ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°ΠΌΠΈ ΠΊ совмСстной ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ ΡΠ²Π»ΡΡŽΡ‚ΡΡ:
  • Полноволновая инвСрсия Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ частотной области (Zhou et all, 2003)
  • БовмСстная инвСрсия Π²Ρ€Π΅ΠΌΠ΅Π½ ΠΏΡ€ΠΈΡ…ΠΎΠ΄Π° ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ ΠΈ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… вступлСний (Hobro et all., 2003)

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ряд сущСствСнных ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ использовании Π² ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ сСйсморазвСдкС. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊ ΠΌΠ°Π»ΠΎΠ³Π»ΡƒΠ±ΠΈΠ½Π½Ρ‹ΠΌ изысканиям, рассматриваСтся Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹.
Π’ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ сСйсморазвСдкС ΡƒΠΆΠ΅ достаточно Π΄Π°Π²Π½ΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°ΡŽΡ‚ΡΡ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠΈ выдСлСния ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ для получСния Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ.  Π’Π΅Π΄ΡŒ ΠΊΠ°ΠΊ извСстно, использованиС Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ€Π΅Ρ„Ρ€Π°Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ ΠΏΡ€ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ Π΄Π°Π΅Ρ‚ слишком Π³Ρ€ΡƒΠ±ΠΎΠ΅ прСдставлСниС ΠΎ скоростном Ρ€Π°Π·Ρ€Π΅Π·Π΅ (рис.1).  
К соТалСнию, Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв, для Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… изысканиях, Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ Π²ΠΎΠ»Π½Ρ‹ Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ сильно “Π·Π°ΡˆΡƒΠΌΠ»Π΅Π½Ρ‹” Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Ρ‚ΠΈΠΏΠ°ΠΌΠΈ Π²ΠΎΠ»Π½.  Π’Π°ΠΊ ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡Π° выдСлСния ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ являСтся ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ,  Ρ‡Ρ€Π΅Π·Π²Ρ‹Ρ‡Π°ΠΉΠ½ΠΎ слоТным Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ -  Π·Π΄Π΅ΡΡŒ ΠΎΠ½Π° Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚.  ΠŸΡ€ΠΈΠΌΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ для ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ профиля Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ вступлСния ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΡ€ΠΈΡ…ΠΎΠ΄Π° ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ для n-Π³ΠΎ количСства Π³Ρ€Π°Π½ΠΈΡ†.

Рисунок 1 Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΉ инвСрсии ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… сСйсмотомографии Π½Π° Ρ€Π΅Ρ„Ρ€Π°Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½Π°Ρ….

ΠŸΡ€Π΅Π΄ΠΏΠΎΡΡ‹Π»ΠΊΠΈ ΠΊ совмСстной ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ минусы сСйсморазвСдки Π½Π° Ρ€Π΅Ρ„Ρ€Π°Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½Π°Ρ… Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстны, это:

  • ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ малая Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΡΡ‚ΡŒ исслСдований
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅  Ρ‚рСбования ΠΊ скоростному Ρ€Π°Π·Ρ€Π΅Π·Ρƒ
  • Низкая Ρ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π°Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ  

Π˜Π½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΡ Π²Ρ€Π΅ΠΌΠ΅Π½ ΠΏΡ€ΠΈΡ…ΠΎΠ΄Π° Ρ‚ΠΎΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ряд ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ, особСнно  ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ части Ρ€Π°Π·Ρ€Π΅Π·Π°:

  • ΠžΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ Π²ΠΎΠ»Π½Ρ‹ часто “загрязнСны” Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Ρ‚ΠΈΠΏΠ°ΠΌΠΈ Π²ΠΎΠ»Π½
  • Врудности коррСляции ΠΏΡ€ΠΈ слоТной Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π³Ρ€Π°Π½ΠΈΡ†
  • Π“ΠΎΠ΄ΠΎΠ³Ρ€Π°Ρ„Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ Π±ΠΎΠ»Π΅Π΅ слоТный Π²ΠΈΠ΄

Анализ плюсов ΠΈ минусов ΠΎΠ±ΠΎΠΈΡ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ мысли ΠΎ совмСстной инвСрсии Π²Ρ€Π΅ΠΌΠ΅Π½ ΠΏΡ€ΠΈΡ…ΠΎΠ΄Π° ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄Π°Ρ‚ΡŒ Π½Π°ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ прСимущСства:

  • Π₯ΠΎΡ€ΠΎΡˆΠΎ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ части Π΄Π°ΡŽΡ‚ Ρ€Π΅Ρ„Ρ€Π°Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π²ΠΎΠ»Π½Ρ‹
  • ΠžΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ Π²ΠΎΠ»Π½Ρ‹ позволяСт ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° Π·Π° счСт Ρ…ΠΎΡ€ΠΎΡˆΠ΅Π³ΠΎ Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ покрытия (Π΄Π°ΠΆΠ΅ ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹)
  • Π‘ΠΎΠ»Π΅Π΅ Ρ‡Π΅Ρ‚ΠΊΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ Π·Π° счСт ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ опрСдСлСния скоростного Ρ€Π°Π·Ρ€Π΅Π·Π°

ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ условиСм совмСстного использования являСтся Π½Π΅ слишком большоС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ проникновСния ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ ΠΈ ΠΎΠΏΠΎΡ€Π½ΠΎΠΉ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹.


РасчСт Π²Ρ€Π΅ΠΌΠ΅Π½ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… вступлСний ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½
ΠŸΡ€ΡΠΌΠ°Ρ Π·Π°Π΄Π°Ρ‡Π° – расчСт Π²Ρ€Π΅ΠΌΠ΅Π½ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… вступлСний ΠΈ  ΠΏΡ€ΠΈΡ…ΠΎΠ΄Π° ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ для срСды с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ распрСдСлСниСм скоростСй ΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚Π΅Π»Π΅ΠΉ базируСтся Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Shortest path (Moser, 1991).  Π­Ρ‚ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ позволяСт Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΊΡ€Π°Ρ‚Ρ‡Π°ΠΉΡˆΠΈΠΉ ΠΏΡƒΡ‚ΡŒ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ рСфрагированная Π²ΠΎΠ»Π½Π°. ΠšΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΉ Π»ΡƒΡ‡Π΅ΠΉ минимального ΠΏΡ€ΠΎΠ±Π΅Π³Π° ΠΎΡ‚ источника ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ° ΠΊ ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚Π΅Π»ΡŽ позволяСт ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΡƒΡ‚ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ‹ для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹.  Π’ качСствС Ρ‚ΠΎΡ‡ΠΊΠΈ отраТСния выбираСтся участок Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ суммарным Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ ΠΏΡ€ΠΎΠ±Π΅Π³Π°  ΠΎΡ‚ источника ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ расчСта сводится ΠΊ Ρ‚Ρ€Π΅ΠΌ основным этапам:

  • Для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠ°Ρ€Ρ‹ источник-ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊ, рассчитываСтся Π΄Π²Π° нисходящих Ρ„Ρ€ΠΎΠ½Ρ‚Π° ΠΊ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Π΅
  • Π’Π΄ΠΎΠ»ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ 2 распрСдСлСния Π²Ρ€Π΅ΠΌΠ΅Π½ ΠΏΡ€ΠΎΠ±Π΅Π³Π° ΠΎΡ‚ источника ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ°
  • Π’ΠΎΡ‡ΠΊΠ° отраТСния выбираСтся исходя ΠΈΠ· Π΄Π²ΡƒΡ… условий: минимальная сумма Π²Ρ€Π΅ΠΌΠ΅Π½ ΠΏΡ€ΠΎΠ±Π΅Π³Π°, ΡƒΠ³ΠΎΠ» падСния Ρ€Π°Π²Π΅Π½ ΡƒΠ³Π»Ρƒ отраТСния

ИспользованиС Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° снимаСт ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π½Π° ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π»ΡŒΠ΅Ρ„Π° ΠΈ ΡƒΠ³Π»Ρ‹ Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹, Ρ‡Ρ‚ΠΎ позволяСт ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Π΅Π³ΠΎ для ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ сСйсморазвСдки.
ΠŸΡ€ΡΠΌΠ°Ρ Π·Π°Π΄Π°Ρ‡Π° Π±Ρ‹Π»Π° Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° для Π΄Π²ΡƒΡ… Ρ‚ΠΈΠΏΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ.  Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΌ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ скоростной Ρ€Π°Π·Ρ€Π΅Π· задаСтся Π½Π°Π±ΠΎΡ€ΠΎΠΌ слоСв с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ† ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ распрСдСлСниСм скорости вдоль профиля Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ слоС (рис. 2). Π‘Π»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π³Ρ€Π°Π½ΠΈΡ† контролируСтся количСством ΡƒΠ·Π»ΠΎΠ². Π›ΡŽΠ±Π°Ρ Π³Ρ€Π°Π½ΠΈΡ†Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅ΠΉ ΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»ΡΡŽΡ‰Π΅ΠΉ, Π»ΠΈΠ±ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»ΡΡŽΡ‰Π΅ΠΉ.  Πš прСимущСствам Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ слСдуСт отнСсти Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ совмСстной ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ P ΠΈ S Π²ΠΎΠ»Π½ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΎΠ΄Π½ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π³Ρ€Π°Π½ΠΈΡ†.  Π’Π°ΠΊΠΆΠ΅ Π΅Π³ΠΎ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½Π½ΠΎΠΉ систСмС наблюдСний. Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ модСль Ρ€Π°Π·Π±ΠΈΡ‚Π° рСгулярной ΡΠ΅Ρ‚ΡŒΡŽ ячССк с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ значСниями скоростСй.  ΠžΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ Π·Π°Π΄Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎ ΠΈ Π½Π΅ связаны с Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ ячССк. Π’Π°ΠΊΠΎΠΉ Ρ‚ΠΈΠΏ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для ΠΏΠ»ΠΎΡ‚Π½Ρ‹Ρ… сСтСй наблюдСний, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ сСйсмотомография.


Рисунок 2 Π“ΠΎΠ΄ΠΎΠ³Ρ€Π°Ρ„Ρ‹ ΠΈ лучСвая схСма ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ…(A) ΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… (B) Π²ΠΎΠ»Π½ для чСтырСхслойной срСды с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ распрСдСлСниСм скоростСй ΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†.


К Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ характСристикам Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° слСдуСт Ρ‚Π°ΠΊΠΆΠ΅ отнСсти Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ СстСствСнного ΡƒΡ‡Π΅Ρ‚Π° Ρ€Π΅Π»ΡŒΠ΅Ρ„Π° повСрхности ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ скоростСй ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° затухания.  
ВСстированиС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ прямой Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ для ряда аналитичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΈ с использованиСм сторонних Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ².  Shortest path ΠΌΠ΅Ρ‚ΠΎΠ΄ основан Π½Π° Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π³Ρ€Π°Ρ„ΠΎΠ², ΠΈ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, поэтому ΠΏΡ€ΠΈ достаточно ΠΏΠ»ΠΎΡ‚Π½ΠΎΠΌ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠΈ Π³Ρ€Π°Π½ΠΈΡ† ΡƒΠ΄Π°Π²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ нСвязки ΠΌΠ΅Π½Π΅Π΅ 0.01 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π°.
Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ
Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ использовался, ΡƒΠΆΠ΅ ΡΡ‚Π°Π²ΡˆΠΈΠΉ классичСским Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π² ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Occam (Constable et all, 1987).  ΠžΡΠ½ΠΎΠ²Π½ΠΎΠΉ  ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΈ совмСстной инвСрсии скоростСй ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡƒΠ·Π»ΠΎΠ² Π³Ρ€Π°Π½ΠΈΡ† являСтся нСсоотвСтствиС ΠΈΡ… размСрностСй. Π­Ρ‚ΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ сказываСтся Π½Π° свойствах ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ систСмы. Для ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ динамичСского Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, ΠΏΡ€ΠΈ инвСрсии Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ логарифмичСскиС Π½ΠΎΡ€ΠΌΡ‹ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² – скоростСй ΠΈ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… мощностСй слоСв ΠΈ логарифмичСскиС Π½ΠΎΡ€ΠΌΡ‹ каТущихся скоростСй.  ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΎΡ‚ Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ слоя ΠΊ мощности ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ пСрСсСчСния Π³Ρ€Π°Π½ΠΈΡ† Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ. Π’Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ΄Π°Π²ΠΈΡ‚ΡŒ ΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ осцилляции Π³Ρ€Π°Π½ΠΈΡ†, Π±Ρ‹Π» использован Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния  ΡΠΊΠΎΡ€ΠΎΡΡ‚Π΅ΠΉ ΠΈ Π³Ρ€Π°Π½ΠΈΡ†.  Π‘Π³Π»Π°ΠΆΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ строился ΠΏΠΎ-Ρ€Π°Π·Π½ΠΎΠΌΡƒ для Π΄Π²ΡƒΡ… Ρ‚ΠΈΠΏΠΎΠ² ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ. Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΌ случаС сглаТиваниС производится ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ слоя Π² Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ. Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ строится ΠΎΠ±Ρ‰ΠΈΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ для сглаТивания скоростСй Π² Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΌ ΠΈ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ для сглаТивания мощностСй слоСв для сосСдних ΡƒΠ·Π»ΠΎΠ² Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ Π²Π½ΡƒΡ‚Ρ€ΠΈ слоя.
ВСстированиС инвСрсии
Алгоритм инвСрсии тСстировался Π½Π° синтСтичСских Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… для Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² скоростных Ρ€Π°Π·Ρ€Π΅Π·ΠΎΠ².  Π’ качСствС основного, Π±Ρ‹Π» Π²Ρ‹Π±Ρ€Π°Π½ чСтырСхслойный Ρ€Π°Π·Ρ€Π΅Π· с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎ скорости ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈ слоСв ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅ΠΌ основаниСм.  Π”ля основания Ρ€Π°Π·Ρ€Π΅Π·Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… Π²ΠΎΠ»Π½ Π±Ρ‹Π»Π° постоянна. Π¨Π°Π³ дискрСтизации Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ соотвСтствовал ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΌΡƒ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ сСйсмоприСмниками. БистСма наблюдСний соотвСтствовала сСйсмичСской Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ с ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠΌ возбуТдСния Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ сСйсмоприСмникС. НСпосрСдствСнно, ΠΏΠ΅Ρ€Π΅Π΄ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ Ρ†ΠΈΠΊΠ»ΠΎΠΌ инвСрсии Π½Π° синтСтичСскиС  Π³ΠΎΠ΄ΠΎΠ³Ρ€Π°Ρ„Ρ‹ Π½Π°ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π»Π°ΡΡŒ ΡˆΡƒΠΌΠΎΠ²Π°Ρ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Ρ€Π°Π·Π½ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹.  

Рисунок 3 ΠŸΡ€ΠΈΠΌΠ΅Ρ€ инвСрсии синтСтичСских Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½. A – расчСтныС Π³ΠΎΠ΄ΠΎΠ³Ρ€Π°Ρ„Ρ‹ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ для ΠΌΠΎΠ΄Π΅Π»ΠΈ C; B – расчСтныС Π³ΠΎΠ΄ΠΎΠ³Ρ€Π°Ρ„Ρ‹ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ для ΠΌΠΎΠ΄Π΅Π»ΠΈ C; C – ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½Π°Ρ модСль с ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΌ основаниСм; D – Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ совмСстной инвСрсии ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½; E - Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ инвСрсии Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½; F - Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ инвСрсии Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½.
   
Рисунок 2 дСмонстрируСт Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ тСстирования Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ слоистой ΠΌΠΎΠ΄Π΅Π»ΠΈ. ВСрхняя Ρ‡Π°ΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π΅Π·Π° прСдставлСна низкоскоростными осадочными образованиями, Π² основании Π»Π΅ΠΆΠ°Ρ‚ ΠΏΠ»ΠΎΡ‚Π½Ρ‹Π΅ ΡΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΡ€ΠΎΠ΄Ρ‹.
БистСма наблюдСний состояла ΠΈΠ· 24 Π³Π΅ΠΎΡ„ΠΎΠ½ΠΎΠ² располоТСнных Ρ‡Π΅Ρ€Π΅Π· 5 ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², с ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠΌ возбуТдСния Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ.
Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· рисунка Π»ΡƒΡ‡ΡˆΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΏΡ€ΠΈ совмСстной инвСрсии Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½.

ВСстированиС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:
На ΠΏΠ΅Ρ€Π²ΠΎΠΌ этапС ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΠ΅Ρ€Π²Ρ‹Ρ… вступлСний для ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ. Π’ качСствС Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ приблиТСния использовалась Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎ-слоистая срСда с постоянным Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚ΠΎΠΌ скоростСй.
 ΠΠ° Π²Ρ‚ΠΎΡ€ΠΎΠΌ этапС скоростной Ρ€Π°Π·Ρ€Π΅Π· подбирался  ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π°ΠΌ ΠΏΡ€ΠΈΡ…ΠΎΠ΄Π° ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ для ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ. Π’ качСствС Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ приблиТСния использовалась Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎ-слоистая срСда с постоянным Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ скорости.
На Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌ  ΡΡ‚Π°ΠΏΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ совмСстная инвСрсия Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½. Как ΠΏΠΎΠΊΠ°Π·Π°Π» наш ΠΎΠΏΡ‹Ρ‚, ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с синтСтичСскими Π΄Π°Π½Π½Ρ‹ΠΌΠΈ, для достиТСния ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΠΎΠΉ нСвязки достаточно Π±Ρ‹Π»ΠΎ Ρ‚Ρ€Π΅Ρ…-Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΉ.
Π’ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΡ€Π°Π²Π½ΠΈΠ²Π°Π»ΠΈΡΡŒ с исходной.
Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ тСстирования для ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ класса ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ сущСствСнноС ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ точности опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΡ€ΠΈ совмСстной инвСрсии Π΄Π°Π½Π½Ρ‹Ρ….


Π’Π°ΠΊΠΆΠ΅ Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС влияния количСства Π΄Π°Π½Π½Ρ‹Ρ… (рис.4) ΠΈ ΡˆΡƒΠΌΠΎΠ²ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ (рис.5) Π½Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ инвСрсии.

Рисунок 4  ΠŸΡ€ΠΈΠΌΠ΅Ρ€ инвСрсии синтСтичСских Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ ΠΏΡ€ΠΈ ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΈ Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½Π½Ρ‹Ρ… систСмах. A – 24 ΠΏΡƒΠ½ΠΊΡ‚Π° возбуТдСния; B – 12 ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ² возбуТдСния; C – 6 ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ² возбуТдСния.

Анализ  Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² для систСм наблюдСний с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ² возбуТдСния ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π΅ слишком сильноС сниТСниС Ρ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅ΠΉ способности.
Рисунок 5  ΠŸΡ€ΠΈΠΌΠ΅Ρ€ инвСрсии синтСтичСских Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ ΠΏΡ€ΠΈ Ρ€Π°Π·Π½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ ΡˆΡƒΠΌΠΎΠ²ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ.  A – ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½Π°Ρ модСль;. B – восстановлСнная, ΡˆΡƒΠΌ – 5 мсСк; C - ΡˆΡƒΠΌ –10 мсСк.  

Алгоритм  ΡΠΎΠ²ΠΌΠ΅ΡΡ‚Π½ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ  Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ ZondST2D  ΠΈ Π² настоящСС врСмя ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ ΡΡ‚Π°Π΄ΠΈΡŽ тСстирования Π½Π° ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°Ρ… (рис.6).

Рисунок 6  Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ инвСрсии ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… (ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π°Ρ Π³Ρ€Π°Π½ΠΈΡ†Π° Π² основании Ρ€Π°Π·Ρ€Π΅Π·Π°).  A – ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ ΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Π΅;. B –Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Π΅.

Для тСстирования Π½Π° ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°Ρ… использовалась систСма наблюдСний с 48 Π³Π΅ΠΎΡ„ΠΎΠ½Π°ΠΌΠΈ Ρ‡Π΅Ρ€Π΅Π· 2 ΠΌΠ΅Ρ‚Ρ€Π° ΠΈ 9 ΠΏΡƒΠ½ΠΊΡ‚Π°ΠΌΠΈ возбуТдСния Ρ‡Π΅Ρ€Π΅Π· 12 ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π΄Π°Π½Π½Ρ‹Ρ… ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ…  Π² инвСрсии составляло: 362 - для Ρ€Π΅Ρ„Ρ€Π°Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ…,  160 - для ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½. ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ нСвязка послС инвСрсии  ΡΠΎΡΡ‚Π°Π²ΠΈΠ»Π° 5.2 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π°.
 

Π’Ρ‹Π²ΠΎΠ΄Ρ‹
ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ…, ΠΊΠ°ΠΊ “большой”, Ρ‚Π°ΠΊ ΠΈ  ΠΌΠ°Π»ΠΎΠ³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠΉ сСйсморазвСдки. БовмСстная инвСрсия Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π΅Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ сущСствСнно ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ качСство Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… скоростных Ρ€Π°Π·Ρ€Π΅Π·ΠΎΠ².

Бсылки

  1. Zhou B., Greenhalgh, S.A., Crosshole seismic inversion with normalized full-waveform amplitude data, Geophysics, 68, 2003.
  2. J.W.D.Hobro, S.C.Singh,T.A.Minshull, Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophysical Journal International, 152, 2003.
  3. Moser T.J., Shortest path calculation of seismic rays, Geophysics, 56, 1991.
  4. Constable S.,Parker R., Constable C. Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics 52, 1987.

Sunday, March 17, 2013

Quality improvement of geoelectrical data interpretation




In recent years, the development of program-algorithmic base of electric exploration had an impact on the ways of field data interpretation. The software is responsible for the result. A formal approach to the data interpretation is a plus by many organizations, and departure from the standard of the count in every way possible suppressed. Such approach to interpretation is untenable because of some properties of inverse modeling. The visionless relevance of the interpreter to the algorithm output can lead to the inadequate results, which compromise geophysics in front of geologists. The inversion algorithm is like a “black box” – the quality of the results depends on the priori information.
Usually the interpretation begins with data analysis and primary data processing. Always there is a rule – “qualitative interpretation begins with the qualitative data”. It is impossible to overestimate the importance of qualitative analysis of observed data. Sometimes, even a small percentage of bad data can affect the resulting model. The dispersion of measurements is important for the data interpretation. Knowledge of dispersion estimator allows setting the correct weight of each measurement during inversion. It is useful to use iterative robust scheme for evaluation of data’s quality. These schemes should be applied in case of variation from the normal distribution of errors, spikes and etc. This algorithm applied to some sample data by different methods. For example, during interpretation of cross-borehole survey it is better to use robust scheme for the data in each of the source position separately.
Except industrial and instrumental method interferences is geological noise. It is known as P or C-effect. It appears when potential or current electrode falls on the local near-surface irregularity. The electric field strongly changes due to the irregularity. As a result, the sounding curve shifts without changing form (VES, MT). A lot of articles are dedicated to methods of controlling the geological noise. We propose the following algorithm to control the P-effect. It can be used during one-dimensional data interpretation.
Picture.1. Comparison of one-dimensional inversion results of electromagnetic sounding profile data according to the proposed (A) and standard (B) methods obtained with the use of ZondMT1D.
Parameter which modeling P-effect add to each curve during the two-dimensional interpretation of MTS data. Geological noise makes the strongest distortions in the data of cross-borehole tomography. During two- or three-dimensional inversion anomalous substance is formed in borehole environment. This substance is not associated with the real geological situation. Tramps, which are controlling by the borehole, separate the earth into loose area. In consequence, parameters are changed or the layers shift on different sides of the borehole. This complicates the geological interpretation of electrotomography results.
For solving this problem is proposed method, which allows to improve inversion results. The algorithm is to use a non-standard smoothing operator. The operator is constructed in such way that to produce through average of non-contiguous cells with borehole.

Picture.2. Comparison of inversion results of electromagnetic sounding synthetic data for model (A) according to the proposed (B) and standard (C) methods obtained with the use of ZondCHT.
During two-dimensional interpretation we should use the special algorithms, if the geoelectrical earth is complex. The complex earth is the earth, where angels of thin layers change or there are several structural levels within the one model. The standard inversion of this model is very rough and the result is not real. We developed the algorithm, which set up any averaging direction of smoothing operator for the different parts of model.
The next important way of quality improvement is adding the log data. The log data can be used in a qualitative or quantitative form. Resistivity log data allows locking or setting intervals range of changing in resistivity for cells along the borehole. Because of that the inversion results improved.

Picture.3. Comparison of inversion results of synthetic RMT data for model (A) with (B) and without (C) log data obtained with the use of ZondMT2D.
Undoubtedly, the best way of interpretation is the integration of geophysical methods. The some geophysical method is the most suitable for some modeling. To get all geological information, we should evaluate results jointly, because of possibility of each method to detect the different geological object. The quantitative integration method is based on special algorithm of focus inversion. The focus inversion is the modification of Occam, which allows to get sectionally-smooth parameterization. For an example, the cover thickness of rock foundation is known according the seismotomography. During electrotomography inversion the focus filter is used. This filter based on this boundary information.
Sometimes, model obtained by smooth inversion, we need to transform to structured geoelectrical model. This model consists of small amounts of objects. In order to do this we use polygonal interpretation. This is the more geological approach of data interpretation.
Picture.4. An example of structured geoelectrical model obtained with the use of ZondRes2dp.
In addition, there are algorithms of sequential interpretation of electrical and electromagnetic data. Result’s quality improvement depends on different sensitivity of electrical and electromagnetic methods to the parameters of geoelectrical models. Equivalent solution reduced due to the sequential interpretation.
There are many methods of data interpretation. This work is devoted to the methods, which are used more frequently during interpretation.